Isospectral towers of Riemannian manifolds

نویسندگان

  • Benjamin Linowitz
  • BENJAMIN LINOWITZ
چکیده

In this paper we construct, for n ≥ 2, arbitrarily large families of infinite towers of compact, orientable Riemannian n-manifolds which are isospectral but not isometric at each stage. In dimensions two and three, the towers produced consist of hyperbolic 2-manifolds and hyperbolic 3-manifolds, and in these cases we show that the isospectral towers do not arise from Sunada’s method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towers of isospectral manifolds

Given two isospectral not isometric manifolds, we construct a new couple of such manifolds as the total spaces of two Riemannian submersions with totally geodesic fibers isometric to the given ones and of basis any other given manifold. By iteration, we obtain families of isospectral not isometric manifolds.

متن کامل

Isospectral locally symmetric manifolds

In this article we construct closed, isospectral, non-isometric locally symmetric manifolds. We have three main results. First, we construct arbitrarily large sets of closed, isospectral, non-isometric manifolds. Second, we show the growth of size these sets of isospectral manifolds as a function of volume is super-polynomial. Finally, we construct pairs of infinite towers of finite covers of a...

متن کامل

Spectral Properties of 4-dimensional Compact Flat Manifolds

We study the spectral properties of a large class of compact flat Riemannian manifolds of dimension 4, namely, those whose corresponding Bieberbach groups have the canonical lattice as translation lattice. By using the explicit expression of the heat trace of the Laplacian acting on p-forms, we determine all p-isospectral and L-isospectral pairs and we show that in this class of manifolds, isos...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012